Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Macromolecular Chemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Macromolecular Chemistry and Physics
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Successive Synthesis of Multiarmed and Multicomponent Star‐Branched Polymers by New Iterative Methodology Based on Linking Reaction between Block Copolymer In‐Chain Anion and α‐Phenylacrylate‐Functionalized Polymer

Authors: hotaro Ito; Raita Goseki; Ian Manners; Takashi Ishizone; Akira Hirao;

Successive Synthesis of Multiarmed and Multicomponent Star‐Branched Polymers by New Iterative Methodology Based on Linking Reaction between Block Copolymer In‐Chain Anion and α‐Phenylacrylate‐Functionalized Polymer

Abstract

A series of multiarmed and multicomponent miktoarm (μ‐) star polymers have been successfully synthesized by developing a new iterative methodology based on a specially designed linking reaction of the block copolymer in‐chain anions, whose anions are positioned between the blocks, with α‐phenylacrylate (PA)‐functionalized polymers. The iterative methodology involves the following two reaction steps: a) introduction of two different polymer segments by the linking reaction of a block copolymer in‐chain anion with a PA‐functionalized polymer and b) regeneration of the PA reaction site. By repeating this reaction sequence, two different polymer segments are advantageously and successively introduced into the μ‐star polymer. In practice, repetition of the reaction sequence affords well‐defined 3‐arm ABC, 5‐arm ABCDE, 7‐arm ABCDEFG, and even 9‐arm ABCDEFGHI μ‐star polymers, composed of polystyrene, polystyrenes substituted with functional groups, polyisoprene, and poly(alkyl methacrylate) arms, respectively. image

Country
Japan
Related Organizations
Keywords

540

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!