Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drosophila myosin V is required for larval development and spermatid individualization

Authors: Mark S. Mooseker; Lynn Jones; Nathalie Bonafé; Valerie Mermall; James R. Sellers; Lynn Cooley;

Drosophila myosin V is required for larval development and spermatid individualization

Abstract

Class V myosins are multifunctional molecular motors implicated in vesicular traffic, RNA transport, and mechanochemical coupling of the actin and microtubule-based cytoskeletons. To assess the function of the single myosin V gene in Drosophila (MyoV), we have characterized both deletion and truncation alleles. Mutant animals exhibit no detectable defects during embryogenesis but are delayed in larval development; most die prior to 3rd instar. MyoV protein is widely distributed; however, there are no obvious cytological defects in mutant larval tissues where MyoV was normally highly expressed. Of the few adult MyoV mutant escapers, females were fertile but males were not. We examined the expression of MyoV during spermatogenesis. MyoV was associated with membranes, microtubule, and actin structures required for spermatid maturation; MyoV was strongly associated with the sperm nuclei during the maturation of the actin-rich investment cones that package spermatids in individual membranes. In MyoV mutant escaper males, the early stages of spermatogenesis were normal; however, in the later stages, the investment cones stained weakly for actin and their registration was disrupted; no mature sperm were produced. Our results suggest that MyoV contributes to the formation of the actin-based investment cones and acts to coordinate and/or anchor these structures and other components of the individualization complex.

Keywords

Male, Myosin Type V, Genes, Insect, Microtubules, Animals, Genetically Modified, Oogenesis, Testis, Animals, Gut, Spermatogenesis, Molecular Biology, Actin, Investment cones, Base Sequence, Myosin Heavy Chains, Gene Expression Regulation, Developmental, Cell Biology, DNA, Individualization complex, Spermatids, Larva, Mutation, Drosophila, Female, CNS, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Top 10%
hybrid