Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pigment Cell Researc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pigment Cell Research
Article . 1998 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mouse Models of Hermansky Pudlak Syndrome: A Review

Authors: Edward K. Novak; Michael P. McGarry; Richard T. Swank; Michael E. Rusiniak; Lijun Feng;

Mouse Models of Hermansky Pudlak Syndrome: A Review

Abstract

Hermansky Pudlak Syndrome (HPS) is a recessively inherited disease affecting the contents and/or the secretion of several related subcellular organelles including melanosomes, lysosomes, and platelet dense granules. It presents with disorders of pigmentation, prolonged bleeding, and ceroid deposition, often accompanied by severe fibrotic lung disease and colitis. In the mouse, the disorder is clearly multigenic, caused by at least 14 distinct mutations. Studies on the mouse mutants have defined the granule abnormalities of HPS and have shown that the disease is associated with a surprising variety of phenotypes affecting many tissues. This is an exciting time in HPS research because of the recent molecular identification of the gene causing a major form of human HPS and the expected identifications of several mouse HPS genes. Identifications of mouse HPS genes are expected to increase our understanding of intracellular vesicle trafficking, lead to discovery of new human HPS genes, and suggest diagnostic and therapeutic approaches toward the more severe clinical consequences of the disease.

Related Organizations
Keywords

Organelles, Disease Models, Animal, Mice, Bleeding Time, Phenotype, Albinism, Oculocutaneous, Pigmentation, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    188
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
188
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!