
Abstract This article describes the high yield synthesis of a range of anisotropic gold mesostructures such as flowers, cubes, plates, and quasispherical mesostructures using a seed-mediated approach. These structures were formed from precursor seed nanoparticles of gold stabilized by the template, 1,2-phenylenediamine (1,2-PDA). We demonstrated that control of the morphologies from mesoflowers to quasispherical structures is possible with the molecular precursors used in the synthesis of seeds. It was found that concentration of the template, 1,2-PDA added during seed preparation played an important role in the conversion of mesoflowers to quasispherical and cube-like structures. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis spectroscopy and energy dispersive analysis of X-rays (EDAX) were used for the determination of physical and chemical composition of the nano/mesostructures formed. The seed nanoparticles responsible for the formation of these various anisotropic structures were further characterized and analyzed using laser desorption ionization mass spectrometry (LDI MS) and TEM. We demonstrated high surface-enhanced resonance Raman scattering (SERRS) activity of the mesoflowers using crystal violet (CV) as the analyte molecule. The shape-dependent SERRS activity of various meso/nanostructures was also studied. A ∼0.8×10 2 decrease in the SERRS intensity was observed in quasispherical structures compared to mesoflowers. The increased SERRS activity is attributed to the unique shape and nanofeatures present on the mesoflowers, which were absent in the quasispherical mesostructures. We believe that the high SERRS activity exhibited by the mesoflowers may be utilized for developing novel sensors.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
