
Analyses of whole-genome sequences and experimental data sets have revealed a large number of DNA sequence motifs that are conserved in many species and may be functional. However, methods of sufficient scale to explore the roles of these elements are lacking. We describe the use of protein arrays to identify proteins that bind to DNA sequences of interest. A microarray of 282 known and potential yeast transcription factors was produced and probed with oligonucleotides of evolutionarily conserved sequences that are potentially functional. Transcription factors that bound to specific DNA sequences were identified. One previously uncharacterized DNA-binding protein, Yjl103, was characterized in detail. We defined the binding site for this protein and identified a number of its target genes, many of which are involved in stress response and oxidative phosphorylation. Protein microarrays offer a high-throughput method for determining DNA–protein interactions.
DNA-Binding Proteins, Chromatin Immunoprecipitation, Binding Sites, Saccharomyces cerevisiae Proteins, Base Sequence, Protein Array Analysis, DNA, Transcription Factors
DNA-Binding Proteins, Chromatin Immunoprecipitation, Binding Sites, Saccharomyces cerevisiae Proteins, Base Sequence, Protein Array Analysis, DNA, Transcription Factors
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 64 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
