
arXiv: 2306.08810
Deep model-based reinforcement learning methods offer a conceptually simple approach to the decision-making and control problem: use learning for the purpose of estimating an approximate dynamics model, and offload the rest of the work to classical trajectory optimization. However, this combination has a number of empirical shortcomings, limiting the usefulness of model-based methods in practice. The dual purpose of this thesis is to study the reasons for these shortcomings and to propose solutions for the uncovered problems. Along the way, we highlight how inference techniques from the contemporary generative modeling toolbox, including beam search, classifier-guided sampling, and image inpainting, can be reinterpreted as viable planning strategies for reinforcement learning problems.
UC Berkeley PhD thesis; supersedes arXiv:2010.14496, arXiv:2106.02039, and arXiv:2205.09991
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
