
pmid: 19854183
Lipid metabolism is highly relevant as it plays a central role in a number of human diseases. Due to the highly interactive structure of lipid metabolism and its regulation, it is necessary to apply a holistic approach, and systems biology is therefore well suited for integrated analysis of lipid metabolism. In this paper it is demonstrated that the yeast Saccharomyces cerevisiae serves as an excellent model organism for studying the regulation of lipid metabolism in eukaryotes as most of the regulatory structures in this part of the metabolism are conserved between yeast and mammals. Hereby yeast systems biology can assist to improve our understanding of how lipid metabolism is regulated.
Metabolic model, Systems Biology, Saccharomyces cerevisiae, Lipid Metabolism, Models, Biological, Yeast, Lipid metabolism, Humans, Genome, Fungal, Systems biology
Metabolic model, Systems Biology, Saccharomyces cerevisiae, Lipid Metabolism, Models, Biological, Yeast, Lipid metabolism, Humans, Genome, Fungal, Systems biology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 100 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
