Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scandinavian Journal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Scandinavian Journal of Immunology
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two Neisseria meningitidis Strains with Different Ability to Stimulate Toll‐Like Receptor 4 Through the MyD88‐Independent Pathway

Authors: Mogensen, T.H.; Paludan, Søren Riis; Kilian, Mogens; Østergaard, L.;

Two Neisseria meningitidis Strains with Different Ability to Stimulate Toll‐Like Receptor 4 Through the MyD88‐Independent Pathway

Abstract

Abstract Neisseria meningitidis causes acute severe diseases, including sepsis and meningitis, and more benign manifestations such as chronic meningococcemia or colonization of the upper respiratory tract. The inflammatory response, which contributes to the pathogenesis of meningococcal disease, is initiated by pattern recognition receptors, among which Toll‐like receptors (TLR)s have been ascribed a particularly important role. We have previously demonstrated that N. meningitidis induce proinflammatory cytokine expression through TLR2 and TLR4. Here we characterize the molecular basis for differential activation of the inflammatory response by two N. meningitidis strains. This difference was due to differential ability to activate signal transduction through TLR4, as HEK293 cells expressing TLR4 produced significantly different levels of interleukin‐8 in response to these strains. At the level of signal transduction, the two strains differed substantially in their ability to activate the pathway to nuclear factor κB in HEK293‐TLR4/MD2 cells at late, but not early, time points. TLR4 activates two signal transduction pathways: one dependent on the adaptor molecule MyD88 and one independent of MyD88, and these pathways induce distinct patterns of gene expression in response to TLR4 ligands. By using macrophages from TLR2−/− mice, we observed that the two strains differed in their ability to activate the TLR4‐induced MyD88‐independent pathway, but not the MyD88‐dependent pathway. This idea was further supported by experiments where either of the two pathways was inhibited and IL‐8 secretion was measured. These data therefore provide molecular insight into activation of the inflammatory response by N. meningitidis, which is one of the key events in the pathogenesis of meningococcal disease.

Related Organizations
Keywords

NF-kappa B, Gene Expression, Neisseria meningitidis, Mice, Mutant Strains, Toll-Like Receptor 2, Toll-Like Receptor 4, Mice, Myeloid Differentiation Factor 88, Macrophages, Peritoneal, Animals, Cytokines, Humans, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
Green
bronze