Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Intracellular Accumulation of Mutant Huntingtin by Beclin 1

Authors: Shibata, Mamoru; Lu, Tao; Furuya, Tsuyoshi; Degterev, Alexei; Mizushima, Noboru; Yoshimori, Tamotsu; MacDonald, Marcy; +2 Authors

Regulation of Intracellular Accumulation of Mutant Huntingtin by Beclin 1

Abstract

Intracellular accumulation of mutant Huntingtin with expanded polyglutamine provides a context-dependent cytotoxicity critical for the pathogenesis of Huntington disease (Everett, C. M., and Wood, N. W. (2004) Brain 127, 2385-2405). Here we demonstrate that the accumulation of mutant Huntingtin is highly sensitive to the expression of beclin 1, a gene essential for autophagy. Moreover, we show that the accumulated mutant Huntingtin recruits Beclin 1 and impairs the Beclin 1-mediated long lived protein turnover. Thus, sequestration of Beclin 1 in the vulnerable neuronal population of Huntington disease patients might further reduce Beclin 1 function and autophagic degradation of mutant Huntingtin. Finally, we demonstrate that the expression of beclin 1 decreases in an age-dependent fashion in human brains. Because beclin 1 gene is haploid insufficient in regulating autophagosome function (Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., Cattoretti, G., and Levine, B. (2003) J. Clin. Invest. 112, 1809-1820; Yue, Z., Jin, S., Yang, C., Levine, A. J., and Heintz, N. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 15077-15082), we propose that the age-dependent decrease of beclin 1 expression may lead to a reduction of autophagic activity during aging, which in turn promotes the accumulation of mutant Htt and the progression of the disease.

Keywords

Adult, Aged, 80 and over, 570, Aging, Huntingtin Protein, 610, Brain, Membrane Proteins, Nuclear Proteins, Proteins, Nerve Tissue Proteins, Middle Aged, Mice, Gene Expression Regulation, Disease Progression, Animals, Humans, Beclin-1, Apoptosis Regulatory Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    413
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
413
Top 1%
Top 1%
Top 1%
gold