Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms

Authors: Ahmed, Lazrak; Zhen, Liu; Chou-Long, Huang;

Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms

Abstract

WNK kinases are serine-threonine kinases with an atypical placement of the catalytic lysine. Intronic deletions with increased expression of a ubiquitous long WNK1 transcript cause pseudohypoaldosteronism type 2 (PHA II), characterized by hypertension and hyperkalemia. Here, we report that long WNK1 inhibited ROMK1 by stimulating its endocytosis. Inhibition of ROMK by long WNK1 was synergistic with, but not dependent on, WNK4. A smaller transcript of WNK1 lacking the N-terminal 1-437 amino acids is expressed highly in the kidney. Whether expression of the KS-WNK1 (kidney-specific, KS) is altered in PHA II is not known. We found that KS-WNK1 did not inhibit ROMK1 but reversed the inhibition of ROMK1 caused by long WNK1. Consistent with the lack of inhibition by KS-WNK1, we found that amino acids 1-491 of the long WNK1 were sufficient for inhibiting ROMK. Dietary K + restriction decreases ROMK abundance in the renal cortical-collecting ducts by stimulating endocytosis, an adaptative response important for conservation of K + during K + deficiency. We found that K + restriction in rats increased whole-kidney transcript of long WNK1 while decreasing that of KS-WNK1. Thus, KS-WNK1 is a physiological antagonist of long WNK1. Hyperkalemia in PHA II patients with PHA II mutations may be caused, at least partially, by increased expression of long WNK1 with or without decreased expression of KS-WNK1.

Keywords

Dynamins, Male, Dose-Response Relationship, Drug, Blotting, Western, Green Fluorescent Proteins, Intracellular Signaling Peptides and Proteins, DNA, Exons, Kidney, Clathrin, Endocytosis, Cell Line, Electrophysiology, Minor Histocompatibility Antigens, Gene Expression Regulation, Animals, Humans, Immunoprecipitation, Female, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 10%
Top 10%
Top 1%
bronze