Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurogastroenterolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurogastroenterology & Motility
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 11 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Apolipoprotein B is a new target of the GDNF/RET and ET‐3/EDNRB signalling pathways

Authors: EVANGELISTI, CECILIA; F. Bianco; PRADELLA, LAURA MARIA; A. Puliti; A. Goldoni; I. Sbrana; M. Rossi; +6 Authors

Apolipoprotein B is a new target of the GDNF/RET and ET‐3/EDNRB signalling pathways

Abstract

AbstractBackground  GDNF/RET and Endothelin‐3 (ET‐3)/EDNRB regulate survival, differentiation, migration, and proliferation of neural crest‐derived cells. Although several RET and EDNRB signalling mediators have been characterized, most of the genes targeted by these two pathways are still largely unknown. We focused our study on apolipoprotein B (APOB) as a novel target gene of the RET and EDNRB pathways, based on previous data obtained using a Caenorhabditis elegans strain mutant for the homologue of mammalian ECE1.Methods  Molecular and cellular studies of Apob were performed in the murine Neuro2a cells, an in vitro model for studying neural crest‐derived cell development, along with a mouse knock‐in for the Hirschsprung‐associated mutation RetC620R. Silencing for Apob and Ret has been performed via shRNA.Key Results  GDNF/RET and ET‐3/EDNRB cooperated in inducing neuronal differentiation resulting in Apob activation in Neuro2a cell line. Apob expression was downregulated in mouse embryos homozygous for the RetC620R mutation and presenting a severe Hirschsprung phenotype. Ret silencing prevented Apob expression increase. MAPK P38 kinase activation evoked Apob expression via GDNF/RET signalling in Neuro2a cells. A p53‐dependent repressor element in Apob promoter resulted in a reduced Apob expression. Silencing of Apob reduced HuD protein expression.Conclusions & Inferences  Apob is a novel downstream target of the RET/EDNRB pathways with a role in neuronal survival and maintenance, as indicated by its effect on HuD expression. Our data provide a conceptual framework to investigate and establish the role of APOB gene in severe gut dysmotility.

Country
Italy
Keywords

Glial Cell Line-Derived Neurotrophic Factor Receptors, Physiology, Blotting, Western, Electrophoretic Mobility Shift Assay, Ret C620R; Neuro2a cell line; Hirschsprung’s disease; ENTERIC NERVOUS SYSTEM; apolipoprotein B, Real-Time Polymerase Chain Reaction, Cell Line, Mice, Animals, Humans, Gene Knock-In Techniques, Glial Cell Line-Derived Neurotrophic Factor, Hirschsprung Disease, European Commission, Promoter Regions, Genetic, Apolipoproteins B, FP7, Neurons, Endothelin-3, EC, Endocrine and Autonomic Systems, Receptors, Endothelin, Apolipoprotein B; Enteric nervous system; Hirschsprung's disease; Neuro2a cell line;, SP1-Cooperation, Gastroenterology, Immunohistochemistry, Health, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 11
  • 3
    views
    11
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
10
Average
Average
Average
3
11
Green
bronze