
The insulin-like growth factor receptor I (IGF-IR) plays an essential role in transformation by promoting cell growth and protecting cancer cells from apoptosis. Aberrant IGF-IR signaling is implicated in several types of tumors, including carcinomas of the lung, breast, prostate, pancreas, liver, and colon. However, the contribution of the IGF-IR to the development of the transformed phenotype in urothelial cells has not been clearly established. In this study we demonstrated that the IGF-IR is overexpressed in invasive bladder cancer tissues compared with nonmalignant controls. We have investigated the role of the IGF-IR in bladder cancer by using urothelial carcinoma-derived 5637 and T24 cells. Although activation of the IGF-IR did not appreciably affect their growth, it did promote migration and stimulate in vitro wound closure and invasion. These effects required the activation of the Akt and Mitogen-activated protein kinase (MAPK) pathways as well as IGF-I-induced Akt- and MAPK-dependent phosphorylation of paxillin, which relocated at dynamic focal adhesions and was necessary for promoting motility in bladder cancer cells. Our results provide the first evidence for a role of the IGF-IR in motility and invasion of bladder cancer cells and support the hypothesis that the IGF-IR may play a critical role in the establishment of the invasive phenotype in urothelial neoplasia. Thus, the IGF-IR may also serve as a novel biomarker for bladder cancer.
Receptor, IGF Type 1, Cell Transformation, Neoplastic, Urinary Bladder Neoplasms, Cell Movement, Cell Line, Tumor, Focal Adhesion Protein-Tyrosine Kinases, Humans, Neoplasm Invasiveness, Mitogen-Activated Protein Kinases, Paxillin, RNA, Small Interfering, Cancer; RAS; IGF-IR., Proto-Oncogene Proteins c-akt, Signal Transduction
Receptor, IGF Type 1, Cell Transformation, Neoplastic, Urinary Bladder Neoplasms, Cell Movement, Cell Line, Tumor, Focal Adhesion Protein-Tyrosine Kinases, Humans, Neoplasm Invasiveness, Mitogen-Activated Protein Kinases, Paxillin, RNA, Small Interfering, Cancer; RAS; IGF-IR., Proto-Oncogene Proteins c-akt, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
