Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurophys...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neurophysiology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contribution of EAG to excitability and potassium currents inDrosophilalarval motoneurons

Authors: Subhashini, Srinivasan; Kimberley, Lance; Richard B, Levine;

Contribution of EAG to excitability and potassium currents inDrosophilalarval motoneurons

Abstract

Diversity in the expression of K+channels among neurons allows a wide range of excitability, growth, and functional regulation. Ether-à-go-go (EAG), a voltage-gated K+channel, was first characterized in Drosophila mutants by spontaneous firing in nerve terminals and enhanced neurotransmitter release. Although diverse functions have been ascribed to this protein, its role within neurons remains poorly understood. The aim of this study was to characterize the function of EAG in situ in Drosophila larval motoneurons. Whole cell patch-clamp recordings performed from the somata revealed a decrease in IAvand IKvK+currents in eag mutants and with targeted eag RNAi expression. Spontaneous spike-like events were observed in eag mutants but absent in wild-type motoneurons. Thus our results provide evidence that EAG represents a unique K+channel contributing to multiple K+currents in motoneurons helping to regulate excitability, consistent with previous observations in the Drosophila larval muscle.

Related Organizations
Keywords

Motor Neurons, Larva, Muscles, Potassium, Animals, Drosophila Proteins, Drosophila, Ion Channel Gating, Ether-A-Go-Go Potassium Channels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
bronze