Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archives of Oral Bio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Oral Biology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Changes in gene-expression during development of the murine molar tooth germ

Authors: Harald, Osmundsen; Maria A, Landin; Sigurd H, From; Kristin M, Kolltveit; Steinar, Risnes;

Changes in gene-expression during development of the murine molar tooth germ

Abstract

In a matter of a few days the murine tooth germ develops into a complex, mineralized, structure. Murine 30K microarrays were used to examine gene expression in the mandibular first molar tooth germs isolated at 15.5dpc and at 2DPN. Microarray results were validated using real-time RT-PCR. The results suggested that only 25 genes (3 without known functions) exhibited significantly higher expression at 15.5dpc compared to 2DPN. In contrast, almost 1400 genes exhibited significantly (P<0.015) higher expression at 2DPN compared to 15.5dpc, about half of which were genes with unknown functions. More than 50 of the 783 known genes exhibited higher than 10-fold increase in expression at 2DPN, amongst these were genes coding for enamel matrix proteins which were expressed several 100-fold higher at 2DPN. GO and KEGG analysis showed highly significant associations between families of the 783 known genes and cellular functions relating to energy metabolism, protein metabolism, regulation of cell division, cell growth and apoptosis. The use of bioinformatics analysis therefore yielded a functional profile in agreement with known differences in tissue morphology and cellular composition between these two stages. Such data is therefore useful in directing attention towards genes, or cellular activities, which likely are worthy of further studies as regards their involvement in odontogenesis.

Related Organizations
Keywords

Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, 610, Gene Expression Regulation, Developmental, Proteins, Tooth Germ, Apoptosis, Gestational Age, Mice, Inbred Strains, Mandible, Molar, Mice, VDP::710, Dental Enamel Proteins, Gene Expression Regulation, Animals, Odontogenesis, Energy Metabolism, Cell Division, Cell Proliferation, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%
Green
bronze