
Gaussian smoothing (GS) is a spatial low pass filtering method widely used in neuroimaging preprocessing. Full width at half maximum (FWHM) is a common parameter when the imaging data convolved with GS kernel. The convolutional neural networks (CNNs) can be considered as the feature extractor, which is implemented by applying a series of different filters. However, the influence of kernel size of GS for feature extraction remains unclear. In this study, we describe an automatic AD classification algorithm that is built on a pre-trained CNN model, AlexNet for feature extraction and support vector machine (SVM) for classification. The algorithm was trained and tested using the structural Magnetic Resonance Imaging (sMRI) data from Alzheimer's Disease Neuroimaging Initiative (ADNI). The data used in this study include 191 Alzheimer's disease (AD) patients and 103 normal control (NC) subjects. We evaluate the influence of FWHM on classification performance. When FWHM is 0mm, the classification accuracy obtained the highest value for AD and NC, which reached 91.5%, 92.4%, 89.0% for conv3, conv4 and conv5 of AlexNet respectively. The classification accuracy at each layer is relatively low when FWHM is 8mm. The result suggests that the higher smooth value may have a negative effect on feature extraction of CNNs during AD classification.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
