Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila

Authors: Andre Bernards;

GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila

Abstract

Typical members of the Ras superfamily of small monomeric GTP-binding proteins function as regulators of diverse processes by cycling between biologically active GTP- and inactive GDP-bound conformations. Proteins that control this cycling include guanine nucleotide exchange factors or GEFs, which activate Ras superfamily members by catalyzing GTP for GDP exchange, and GTPase activating proteins or GAPs, which accelerate the low intrinsic GTP hydrolysis rate of typical Ras superfamily members, thus causing their inactivation. Two among the latter class of proteins have been implicated in common genetic disorders associated with an increased cancer risk, neurofibromatosis-1, and tuberous sclerosis. To facilitate genetic analysis, I surveyed Drosophila and human sequence databases for genes predicting proteins related to GAPs for Ras superfamily members. Remarkably, close to 0.5% of genes in both species (173 human and 64 Drosophila genes) predict proteins related to GAPs for Arf, Rab, Ran, Rap, Ras, Rho, and Sar family GTPases. Information on these genes has been entered into a pair of relational databases, which can be used to identify evolutionary conserved proteins that are likely to serve basic biological functions, and which can be updated when definitive information on the coding potential of both genomes becomes available.

Related Organizations
Keywords

rho GTP-Binding Proteins, Saccharomyces cerevisiae Proteins, ADP-Ribosylation Factors, GTPase-Activating Proteins, Vesicular Transport Proteins, Protein Structure, Tertiary, Substrate Specificity, ran GTP-Binding Protein, rap GTP-Binding Proteins, rab GTP-Binding Proteins, ras GTPase-Activating Proteins, Databases, Genetic, Animals, Humans, Drosophila, Monomeric GTP-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    316
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
316
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?