Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Econometrics
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Simple subvector inference on sharp identified set in affine models

Authors: Gafarov, Bulat;

Simple subvector inference on sharp identified set in affine models

Abstract

This paper studies a regularized support function estimator for bounds on components of the parameter vector in the case in which the identified set is a polygon. The proposed regularized estimator has three important properties: (i) it has a uniform asymptotic Gaussian limit in the presence of flat faces in the absence of redundant (or overidentifying) constraints (or vice versa); (ii) the bias from regularization does not enter the first-order limiting distribution; (iii) the estimator remains consistent for sharp (non-enlarged) identified set for the individual components even in the non-regualar case. These properties are used to construct \emph{uniformly valid} confidence sets for an element $θ_{1}$ of a parameter vector $θ\in\mathbb{R}^{d}$ that is partially identified by affine moment equality and inequality conditions. The proposed confidence sets can be computed as a solution to a small number of linear and convex quadratic programs, leading to a substantial decrease in computation time and guarantees a global optimum. As a result, the method provides a uniformly valid inference in applications in which the dimension of the parameter space, $d$, and the number of inequalities, $k$, were previously computationally unfeasible ($d,k=100$). The proposed approach can be extended to construct confidence sets for intersection bounds, to construct joint polygon-shaped confidence sets for multiple components of $θ$, and to find the set of solutions to a linear program. Inference for coefficients in the linear IV regression model with an interval outcome is used as an illustrative example.

The earlier version of the paper was previously circulated under title "Inference on scalar parameters in set-identified affine models" and was a chapter in my PhD dissertation

Keywords

asymptotic linear representation, Statistics, Game theory, economics, finance, and other social and behavioral sciences, Econometrics (econ.EM), subvector inference, partial identification, regularization, FOS: Economics and business, stochastic programming, strong approximation, interval data, intersection bounds, uniform inference, higher-order analysis, delta method, affine-moment inequalities, Economics - Econometrics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green