Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cluster communication protocols for parallel-programming systems

Authors: Verstoep, K.; Bhoedjang, R.A.F.; Rühl, T.; Bal, H.E.; Hofman, R.;

Cluster communication protocols for parallel-programming systems

Abstract

Clusters of workstations are a popular platform for high-performance computing. For many parallel applications, efficient use of a fast interconnection network is essential for good performance. Several modern System Area Networks include programmable network interfaces that can be tailored to perform protocol tasks that otherwise would need to be done by the host processors. Finding the right trade-off between protocol processing at the host and the network interface is difficult in general. In this work, we systematically evaluate the performance of different implementations of a single, user-level communication interface. The implementations make different architectural assumptions about the reliability of the network and the capabilities of the network interface. The implementations differ accordingly in their division of protocol tasks between host software, network-interface firmware, and network hardware. Also, we investigate the effects of alternative data-transfer methods and multicast implementations, and we evaluate the influence of packet size. Using microbenchmarks, parallel-programming systems, and parallel applications, we assess the performance of the different implementations at multiple levels. We use two hardware platforms with different performance characteristics to validate our conclusions. We show how moving protocol tasks to a relatively slow network interface can yield both performance advantages and disadvantages, depending on specific characteristics of the application and the underlying parallel-programming system.

Related Organizations
Keywords

SDG 7 - Affordable and Clean Energy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!