
pmid: 7485470
The cDNA for ATP1AL1, the fifth member of the human Na-K-adenosinetriphosphatase (ATPase)/H-K-ATPase gene family, was recently cloned (A. V. Grishin, V. E. Sverdlov, M. B. Kostina, and N. N. Modyanov. FEBS Lett. 349: 144-150, 1994). The encoded protein (ATP1AL1) has all the primary structural features common to the catalytic alpha-subunit of ion-transporting P-type ATPases and is similar (63-64% identity) to the Na-K-ATPase alpha-subunit isoforms and the gastric H-K-ATPase alpha-subunit. In this study, ATP1AL1 was expressed in Xenopus laevis oocytes in combination with the beta-subunit of rabbit gastric H-K-ATPase. The functional properties of the stable alpha/beta-complex were studied by 86Rb+ uptake and demonstrated that ATP1AL1 is a novel human K(+)-dependent ATPase [apparent half-constant activation/(K1/2) for K+ approximately 375 microM)]. ATP1AL1-mediated inward K+ transport was inhibited by ouabain (inhibition constant approximately 13 microM) and was found to be inhibited by high concentrations of SCH-28080 (approximately 70% at 500 microM). ATP1AL1 expression resulted in the alkalinization of the oocytes' cytoplasm and ouabain-sensitive proton extrusion, as measured with pH-sensitive microelectrodes. These data argue that ATP1AL1 is the catalytic alpha-subunit of a human nongastric P-type ATPase capable of exchanging extracellular potassium for intracellular protons.
Imidazoles, Biological Transport, H(+)-K(+)-Exchanging ATPase, Xenopus laevis, Genes, Oocytes, Potassium, Animals, Humans, Rabbits, Ouabain
Imidazoles, Biological Transport, H(+)-K(+)-Exchanging ATPase, Xenopus laevis, Genes, Oocytes, Potassium, Animals, Humans, Rabbits, Ouabain
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 72 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
