Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Seminars in Cell and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Cell and Developmental Biology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular mechanisms of COPII vesicle formation

Authors: Lee, Marcus C.S.; Miller, Elizabeth A.;

Molecular mechanisms of COPII vesicle formation

Abstract

The first step in protein secretion from eukaryotic cells is mediated by COPII vesicles, known for the cytoplasmic coat proteins that are the minimal machinery required to generate these small transport carriers. The five COPII coat components coordinate to create a vesicle by locally generating membrane curvature and populating the incipient bud with the appropriate cargo. This review describes the molecular details of how the COPII coat sculpts vesicles from the endoplasmic reticulum and highlights some unresolved questions regarding the regulation of this process in the complex environment of the eukaryotic cell.

Country
United Kingdom
Related Organizations
Keywords

Models, Molecular, 570, Cargo capture, Vesicular Transport Proteins, 540, Endoplasmic Reticulum, name=Cell Biology, GTP Phosphohydrolases, name=Developmental Biology, COPII, Animals, Humans, /dk/atira/pure/subjectarea/asjc/1300/1309, COP-Coated Vesicles, Carrier Proteins, /dk/atira/pure/subjectarea/asjc/1300/1307, Protein Processing, Post-Translational, Endoplasmic reticulum, Transport vesicle, Monomeric GTP-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?