
arXiv: 2412.12243
We study the 1d Ising model with long-range interactions decaying as $1/r^{1+s}$. The critical model corresponds to a family of 1d conformal field theories (CFTs) whose data depends nontrivially on $s$ in the range $1/2\leq s\leq 1$. The model is known to be described by a generalized free field with quartic interaction, which is weakly coupled near $s=1/2$ but strongly coupled near the short-range crossover at $s=1$. We propose a dual description which becomes weakly coupled at $s=1$. At $s=1$, our model becomes an exactly solvable conformal boundary condition for the 2d free scalar. We perform a number of consistency checks of our proposal and calculate the perturbative CFT data around $s=1$ analytically using both 1) our proposed field theory and 2) the analytic conformal bootstrap. Our results show complete agreement between the two methods.
5+1 pages. v2: published version
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Mathematical Physics (math-ph), Condensed Matter - Statistical Mechanics, Mathematical Physics
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Mathematical Physics (math-ph), Condensed Matter - Statistical Mechanics, Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
