Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

1d Ising model with $1/r^{1.99}$ interaction

Authors: Benedetti, Dario; Lauria, Edoardo; Mazáč, Dalimil; van Vliet, Philine;

1d Ising model with $1/r^{1.99}$ interaction

Abstract

We study the 1d Ising model with long-range interactions decaying as $1/r^{1+s}$. The critical model corresponds to a family of 1d conformal field theories (CFTs) whose data depends nontrivially on $s$ in the range $1/2\leq s\leq 1$. The model is known to be described by a generalized free field with quartic interaction, which is weakly coupled near $s=1/2$ but strongly coupled near the short-range crossover at $s=1$. We propose a dual description which becomes weakly coupled at $s=1$. At $s=1$, our model becomes an exactly solvable conformal boundary condition for the 2d free scalar. We perform a number of consistency checks of our proposal and calculate the perturbative CFT data around $s=1$ analytically using both 1) our proposed field theory and 2) the analytic conformal bootstrap. Our results show complete agreement between the two methods.

5+1 pages. v2: published version

Keywords

High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Mathematical Physics (math-ph), Condensed Matter - Statistical Mechanics, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green