Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Pharmacology
Article . 1994 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of nitric oxide synthase inhibition on long‐term potentiation at associational‐commissural and mossy fibre synapses on CA3 pyramidal neurones

Authors: P.J. Nicolarakis; Yong Qi Lin; Max R. Bennett;

Effect of nitric oxide synthase inhibition on long‐term potentiation at associational‐commissural and mossy fibre synapses on CA3 pyramidal neurones

Abstract

1. The sensitivity of long-term potentiation (LTP) to nitric oxide synthase (NOS) inhibition was determined for two synaptic input systems onto CA3 pyramidal neurones the LTP of which display differential sensitivity to N-methyl-D-aspartate (NMDA) receptor antagonists: the fimbrial input which activates the associational-commissural synapses on the distal apical dendrites and the mossy fibre input which synapses on the proximal apical dendrites of CA3 pyramidal neurones. 2. Following high-frequency stimulation (HFS) of the fimbrial input, average e.p.s.p. amplitude increased by 92.4 +/- 22.0% (mean +/- s.e.mean; n = 6 cells) when compared to the pre-HFS average. In the presence of 100 microM N omega-nitro-L-arginine methyl ester (L-NAME), the enhancement was reduced significantly to 32.2 +/- 11.6% (n = 5 cells; P 0.05). Similarly, increasing the concentration of L-NAME to 300 microM had no significant effect on the potentiation, with the post-HFS amplitude increasing by an average 55.6 +/- 9.5% (n = 5 cells, P > 0.05). 4. These results suggest that LTP at associational-commissural synapses (fimbrial input) is significantly depressed in the presence of the NOS inhibitor L-NAME, while mossy fibre LTP is unchanged.

Related Organizations
Keywords

Male, Pyramidal Cells, Long-Term Potentiation, In Vitro Techniques, Arginine, Nitric Oxide, Hippocampus, Receptors, N-Methyl-D-Aspartate, Electric Stimulation, Rats, NG-Nitroarginine Methyl Ester, Nerve Fibers, Synapses, Animals, Amino Acid Oxidoreductases, Nitric Oxide Synthase, Rats, Wistar, Evoked Potentials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Average
bronze