Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Histone demethylase JMJD3 disrupts spectrin-dependent cytoskeleton in Pancreatic Ductal Adenocarcinoma cells by regulating H exokinase domain containing 1 expression

Authors: Zhangang Xiao; Jing Shen; Chi Hin Cho; Shixin Xiang; Chi Han Li; Ka-Fai To; Qijie Zhao; +4 Authors

Histone demethylase JMJD3 disrupts spectrin-dependent cytoskeleton in Pancreatic Ductal Adenocarcinoma cells by regulating H exokinase domain containing 1 expression

Abstract

Abstract Background: JMJD3 is a jmjd domain containing histone demethylase which can remove methyl groups from lysine 27 of histone 3 (H3K27) to active histone methylated genes. Previous studies have demonstrated that JMJD3 played a crucial role in inflammation. Methods: Our study showed that JMJD3 was significantly down-regulated in pancreatic ductal adenocarcinoma (PDAC) cell lines and tissues. Restored expression of JMJD3 inhibited oncogenic phenotypes of PDAC cells, including cell proliferation, cell migration, and in vivo tumorigenicity, indicating a tumor suppressive role. Gene-expression microarray revealed that Hexokinase domain containing 1 (HKDC1) was one of the JMJD3 downstream targets. Results: The expression of JMJD3 and HKDC1 in PDAC tissues was positively correlated. High H3K27 tri-methylation (H3K27me3) status in HKDC1 gene was attenuated by ectopic expression of JMJD3 in PDAC cells, suggested that JMJD3 regulated HKDC1 expression by histone demethylation activity. The tumor suppressive role of HKDC1 in PDAC was also proved. Moreover, HKDC1 was demonstrated to competitively bind to spectrin beta Ⅱ to induce cytoskeleton disruption, which may contribute to tumor suppression. Conclusion: Taken together, our study indicates that JMJD3 may disrupt spectrin-dependent cytoskeleton via activation of HKDC1 to suppress PDAC.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid