Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression and roles of connective tissue growth factor in Meckel's cartilage development

Authors: Tsuyoshi, Shimo; Manabu, Kanyama; Changshan, Wu; Hiroki, Sugito; Paul C, Billings; William R, Abrams; Joel, Rosenbloom; +3 Authors

Expression and roles of connective tissue growth factor in Meckel's cartilage development

Abstract

AbstractMeckel's cartilage is a prominent feature of the developing mandible, but its formation and roles remain unclear. Because connective tissue growth factor (CTGF, CCN2) regulates formation of other cartilages, we asked whether it is expressed and what roles it may have in developing mouse Meckel's cartilage. Indeed, CTGF was strongly expressed in anterior, central, and posterior regions of embryonic day (E) 12 condensing Meckel's mesenchyme. Expression decreased in E15 newly differentiated chondrocytes but surged again in E18 hypertrophic chondrocytes located in anterior region and most‐rostral half of central region. These cells were part of growth plate‐like structures with zones of maturation resembling those in a developing long bone and expressed such characteristic genes as Indian hedgehog (Ihh), collagen X, MMP‐9, and vascular endothelial growth factor. At each stage examined perichondrial tissues also expressed CTGF. To analyze CTGF roles, mesenchymal cells isolated from E10 first branchial arches were tested for interaction and responses to recombinant CTGF (rCTGF). The cells readily formed aggregates in suspension culture and interacted with substrate‐bound rCTGF, but neither event occurred in the presence of CTGF neutralizing antibodies. In good agreement, rCTGF treatment of micromass cultures stimulated both expression of condensation‐associated macromolecules (fibronectin and tenascin‐C) and chondrocyte differentiation. Expression of these molecules and CTGF itself was markedly up‐regulated by treatment with transforming growth factor‐β1, a chondrogenic factor. In conclusion, CTGF is expressed in highly dynamic manners in developing Meckel's cartilage where it may influence multiple events, including chondrogenic cell differentiation and chondrocyte maturation. CTGF may aid chondrogenesis by acting down‐stream of transforming growth factor‐β and stimulating cell–cell interactions and expression of condensation‐associated genes. Developmental Dynamics 231:136–147, 2004. © 2004 Wiley‐Liss, Inc.

Related Organizations
Keywords

Vascular Endothelial Growth Factor A, Connective Tissue Growth Factor, Gene Expression Regulation, Developmental, Cell Differentiation, Tenascin, Embryo, Mammalian, Immediate-Early Proteins, Mice, Cartilage, Chondrocytes, Matrix Metalloproteinase 9, Transforming Growth Factor beta, Trans-Activators, Animals, Intercellular Signaling Peptides and Proteins, Hedgehog Proteins, Collagen, Chondrogenesis, Cells, Cultured, Cell Aggregation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze