Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 1997
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 1997 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Origin and Differentiation of Supernumerary Midline Glia inDrosophilaEmbryos Deficient for Apoptosis

Authors: Rong Dong; J. Roger Jacobs;

Origin and Differentiation of Supernumerary Midline Glia inDrosophilaEmbryos Deficient for Apoptosis

Abstract

Drosophila embryos deficient for programmed cell death produce 9 midline glia (MG) in addition to the wild-type complement of 3.2 MG/segment. More than 3 of the supernumerary MG derive from the MGP (MG posterior) lineage and the remainder from the MGA/MGM (MG anterior and middle) lineage. There is one unidentified additional neuron in the mesectoderm of embryos deficient for apoptosis. The supernumerary MG are not diverted from other lineages nor do they arise from an altered pattern of mitosis. Instead, these MG appear to arise from a normally existing pool of 12 precursor cells, larger than anticipated by earlier studies. During normal development, MG survival is dependent upon signaling to the Drosophila EGF receptor. The persistence of supernumerary MG in embryos deficient for apoptosis does not alter the spatial pattern of Drosophila EGF receptor signaling. The number and position of MG which express genes dependent upon EGF receptor function, such as pointed or argos, are indistinguishable from wild type. Genes of the spitz group are required for Drosophila EGF receptor function. Surviving MG in spitz group/H99 double mutants continue to express genes characteristic of the MG, but the cells fail to differentiate into ensheathing glia and are displaced from the nerve cord.

Keywords

Apoptosis, Cell Count, Genes, Insect, Nerve Tissue Proteins, Cell Communication, Animals, Drosophila Proteins, Cell Lineage, Nerve Tissue, Eye Proteins, Molecular Biology, Body Patterning, Epidermal Growth Factor, Membrane Proteins, Cell Differentiation, Cell Biology, DNA-Binding Proteins, ErbB Receptors, Mutation, Drosophila, Peptides, Neuroglia, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Average
Top 10%
Top 10%
hybrid