Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury

Authors: Johan, Zelano; Alexander, Berg; Sebastian, Thams; Nils P, Hailer; Staffan, Cullheim;

SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury

Abstract

AbstractSynCAM1 and neuroligins (NLGs) are adhesion molecules that govern synapse formation in vitro. In vivo, the molecules are expressed during synaptogenesis, and altered NLG function is linked to synapse dysfunction in autism. Less is known about SynCAM1 and NLGs in adult synapse remodeling. CNS synapse elimination occurs after peripheral nerve injury, which causes a transient decrease in synapse number on spinal motoneurons. Here we have studied the expression of SynCAM1 and NLGs in relation to changes in synaptic covering on spinal motoneurons. We performed sciatic nerve transection (SNT) or crush (SNC), axotomy models that result in poor or good conditions for axon regeneration, respectively. The two lesions resulted in similar synapse elimination and in poor (SNT) and good (SNC) return of synapses after 70 days. Functional recovery was good after SNC but absent after SNT. SynCAM1 mRNA decreased after 14 days in both models and was restored 70 days after SNC, but not after SNT. NLG2 and ‐3 mRNAs decreased to a smaller degree after SNC than after SNT. Synaptophysin immunoreactivity correlated with SynCAM1 mRNA 70 days after SNT and NLG2 mRNA 70 days after SNC. Surprisingly, an inverse correlation was seen between NLG3 mRNA and Vglut2, a marker for excitatory synapses, 70 days after SNT. We conclude that 1) SynCAM1 mRNA levels seem to reflect the loss and restoration of synapses on motoneurons, 2) down‐regulation of NLGs is not a prerequisite for synapse elimination, and 3) expression of SynCAM1 and NLGs is regulated by different mechanisms during regeneration. J. Comp. Neurol. 517:670–682, 2009. © 2009 Wiley‐Liss, Inc.

Keywords

Motor Neurons, Analysis of Variance, Neuronal Plasticity, Nerve Crush, Cell Adhesion Molecules, Neuronal, Immunoglobulins, Membrane Proteins, Axotomy, Nerve Tissue Proteins, Recovery of Function, Immunohistochemistry, Axons, Nerve Regeneration, Rats, Rats, Sprague-Dawley, Disease Models, Animal, Animals, Female, RNA, Messenger, Cell Adhesion Molecules

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!