Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2004 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2005
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estrogen Receptor Genotypes and Haplotypes Associated with Breast Cancer Risk

Authors: Bert, Gold; Francis, Kalush; Julie, Bergeron; Kevin, Scott; Nandita, Mitra; Kelly, Wilson; Nathan, Ellis; +11 Authors

Estrogen Receptor Genotypes and Haplotypes Associated with Breast Cancer Risk

Abstract

Abstract Nearly one in eight US women will develop breast cancer in their lifetime. Most breast cancer is not associated with a hereditary syndrome, occurs in postmenopausal women, and is estrogen and progesterone receptor-positive. Estrogen exposure is an epidemiologic risk factor for breast cancer and estrogen is a potent mammary mitogen. We studied single nucleotide polymorphisms (SNPs) in estrogen receptors in 615 healthy subjects and 1011 individuals with histologically confirmed breast cancer, all from New York City. We analyzed 13 SNPs in the progesterone receptor gene (PGR), 17 SNPs in estrogen receptor 1 gene (ESR1), and 8 SNPs in the estrogen receptor 2 gene (ESR2). We observed three common haplotypes in ESR1 that were associated with a decreased risk for breast cancer [odds ratio (OR), ∼ O.4; 95% confidence interval (CI), 0.2–0.8; P < 0.01]. Another haplotype was associated with an increased risk of breast cancer (OR, 2.1; 95% CI, 1.2–3.8; P < 0.05). A unique risk haplotype was present in ∼7% of older Ashkenazi Jewish study subjects (OR, 1.7; 95% CI, 1.2–2.4; P < 0.003). We narrowed the ESR1 risk haplotypes to the promoter region and first exon. We define several other haplotypes in Ashkenazi Jews in both ESR1 and ESR2 that may elevate susceptibility to breast cancer. In contrast, we found no association between any PGR variant or haplotype and breast cancer. Genetic epidemiology study replication and functional assays of the haplotypes should permit a better understanding of the role of steroid receptor genetic variants and breast cancer risk.

Keywords

Male, Base Sequence, Genotype, Estrogen Receptor alpha, Reproducibility of Results, Breast Neoplasms, Middle Aged, Polymorphism, Single Nucleotide, Linkage Disequilibrium, Cell Transformation, Neoplastic, Haplotypes, Case-Control Studies, Ethnicity, Estrogen Receptor beta, Humans, Female, Genetic Predisposition to Disease, Receptors, Progesterone

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 1%
bronze
Related to Research communities
Cancer Research