Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INFORMATION TECHNOLO...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INFORMATION TECHNOLOGY IN INDUSTRY
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Motor Imagery EEG Classification Based on Feature Extraction and Machine Learning Algorithm

Authors: Rameshwar D. Chintamani, Et. al.;

Analysis of Motor Imagery EEG Classification Based on Feature Extraction and Machine Learning Algorithm

Abstract

The brain-computer interface provides the excellent potential to address nervous system-related activity. The function of the nervous system work between internal brain control and external human body physical structure. Some parts of the human body cannot generate the signal for the processing of the human brain, cannot recognize and identify human body parts' activity—the motor imagery EEG classification approach helps resolve such types of critical illness cause of death. The dimension and structure of motor imagery-based EEG data are very high and unsupported behaviors. The machine learning and another classification algorithm cannot handle these variants of EEG data directly. For the process of better classification of motor imagery, EEG needs transformation and extraction. The transform-based feature extraction process such as DCT, DWT, SFTF and some other harmonic frequency-based applied. In this paper presents the details analysis of feature extraction and classification algorithms for motor imagery EEG classification. The machine learning provides three types of an algorithm for classification, supervised, unsupervised and semi-supervised. This paper mainly focuses on the supervised machine learning algorithm. For the analysis of machine learning algorithm use BC competition-IV dataset. MATLAB software is used as a tool for the code of algorithms and measures standard parameters such as accuracy, sensitivity and specificity.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze