Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2014 . Peer-reviewed
Data sources: Crossref
Science
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Structural Basis of Pathogenic Subgenomic Flavivirus RNA (sfRNA) Production

Authors: Erich G, Chapman; David A, Costantino; Jennifer L, Rabe; Stephanie L, Moon; Jeffrey, Wilusz; Jay C, Nix; Jeffrey S, Kieft;

The Structural Basis of Pathogenic Subgenomic Flavivirus RNA (sfRNA) Production

Abstract

Resisting the Chop Dengue, West Nile, and Yellow Fever viruses are all flaviviruses that have single-stranded RNA genomes and form specific, short flaviviral RNAs (sfRNAs) during infection that cause viral pathogenicity. These sfRNAs are produced by the incomplete degradation of viral RNA by the host-cell exonuclease Xrn1. What stops the host enzyme from completely chopping up the viral RNA? Chapman et al. (p. 307 ) reveal a pseudoknot in the structure of the Xrn1-resistant segment of a sfRNA from Murray Valley Encephalitis Virus, which, perhaps, the host Xrn1 exonuclease cannot untangle.

Keywords

Models, Molecular, Base Sequence, Molecular Sequence Data, Encephalitis Virus, Murray Valley, Crystallography, X-Ray, Exoribonucleases, Mutation, Nucleic Acid Conformation, RNA, Viral, Base Pairing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    235
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
235
Top 1%
Top 10%
Top 1%
bronze