Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Modern Ph...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Modern Physics
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Modern Physics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Matter-Antimatter Coexistence Method for Finite Density QCD toward a Solution of the Sign Problem

Authors: Suganuma, Hideo;

Matter-Antimatter Coexistence Method for Finite Density QCD toward a Solution of the Sign Problem

Abstract

Toward the lattice QCD calculation at finite density, we propose "matter-antimatter coexistence method", where matter and anti-matter systems are prepared on two parallel ${\bf R}^4$-sheets in five-dimensional Euclidean space-time. We put a matter system $M$ with a chemical potential $��\in {\bf C}$ on a ${\bf R}^4$-sheet, and also put an anti-matter system $\bar M$ with $-��^*$ on the other ${\bf R}^4$-sheet shifted in the fifth direction. Between the gauge variables $U_��\equiv e^{iagA_��}$ in $M$ and $\tilde U_��\equiv e^{iag \tilde A_��}$ in $\bar M$, we introduce a correlation term with a real parameter $��$. In one limit of $��\rightarrow \infty$, a strong constraint $\tilde U_��(x)=U_��(x)$ is realized, and therefore the total fermionic determinant becomes real and non-negative, due to the cancellation of the phase factors in $M$ and $\bar M$, although this system resembles QCD with an isospin chemical potential. In another limit of $��\rightarrow 0$, this system goes to two separated ordinary QCD systems with the chemical potential of $��$ and $-��^*$. For a given finite-volume lattice, if one takes an enough large value of $��$, $\tilde U_��(x) \simeq U_��(x)$ is realized and phase cancellation approximately occurs between two fermionic determinants in $M$ and $\bar M$, which suppresses the sign problem and is expected to make the lattice calculation possible. For the obtained gauge configurations of the coexistence system, matter-side quantities are evaluated through their measurement only for the matter part $M$. The physical quantities in finite density QCD are expected to be estimated by the calculations with gradually decreasing $��$ and the extrapolation to $��=0$. We also consider more sophisticated improvement of this method using an irrelevant-type correlation.

4 pages

Country
Japan
Related Organizations
Keywords

High Energy Physics - Theory, High Energy Physics - Phenomenology, Sign Problem, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), QCD Phase Diagram, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, Lattice QCD, Finite Density

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold