Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Fluids
Article . 1990 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1990
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Finite difference and finite element methods for mhd channel flows

Finite difference and finite element methods for MHD channel flows
Authors: Ramos, J. I.; Winowich, N. S.;

Finite difference and finite element methods for mhd channel flows

Abstract

AbstractA Galerkin finite element method and two finite difference techniques of the control volume variety have been used to study magnetohydrodynamic channel flows as a function of the Reynolds number, interaction parameter, electrode length and wall conductivity. The finite element and finite difference formulations use unequally spaced grids to accurately resolve the flow field near the channel wall and electrode edges where steep flow gradients are expected. It is shown that the axial velocity profiles are distorted into M‐shapes by the applied electromagnetic field and that the distortion increases as the Reynolds number, interaction parameter and electrode length are increased. It is also shown that the finite element method predicts larger electromagnetic pinch effects at the electrode entrance and exit and larger pressure rises along the electrodes than the primitive‐variable and streamfunction–vorticity finite difference formulations. However, the primitive‐variable formulation predicts steeper axial velocity gradients at the channel walls and lower axial velocities at the channel centreline than the streamfunction–vorticity finite difference and the finite element methods. The differences between the results of the finite difference and finite element methods are attributed to the different grids used in the calculations and to the methods used to evaluate the pressure field. In particular, the computation of the velocity field from the streamfunction–vorticity formulation introduces computational noise, which is somewhat smoothed out when the pressure field is calculated by integrating the Navier–Stokes equations. It is also shown that the wall electric potential increases as the wall conductivity increases and that, at sufficiently high interaction parameters, recirculation zones may be created at the channel centreline, whereas the flow near the wall may show jet‐like characteristics.

Related Organizations
Keywords

finite difference techniques, electromagnetic field, magnetohydrodynamic channel flows, control volume, streamfunction-vorticity finite difference formulations, Magnetohydrodynamics and electrohydrodynamics, Galerkin finite element method, wall conductivity, Finite difference methods applied to problems in fluid mechanics, Finite element methods applied to problems in fluid mechanics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!