Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distinct Membrane and Cytosolic Forms of Inositol Polyphosphate 5-Phosphatase II

Authors: Caroline J. Speed; Phillip I. Bird; Cindy J. O'Malley; Anne Badger; Maria Matzaris; Christina Anne Mitchell;

Distinct Membrane and Cytosolic Forms of Inositol Polyphosphate 5-Phosphatase II

Abstract

The 75-kDa inositol polyphosphate 5-phosphatase (5-phosphatase II) hydrolyzes various signaling molecules including the following: inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol 4,5-bisphosphate, and phosphatidylinositol 3,4, 5-trisphosphate. Although studied extensively, a demonstrably full-length cDNA encoding 5-phosphatase II has yet to be isolated. In this study we used a human partial 2.3-kilobase pair (kb) cDNA to screen mouse brain and kidney cDNA libraries, resulting in the isolation of a 3.7-kb cDNA (M5), which by multiple criteria represents a full-length cDNA encoding a 115-kDa 5-phosphatase II. We also isolated a smaller cDNA (M22) with a unique N terminus that encodes a 104-kDa polypeptide. Analysis of these cDNAs suggests a further 87-kDa isoform may arise from differential splicing resulting in translation at methionine 234 in M5. RNA analysis of tissues demonstrates expression of two mRNA species of approximately 4.0 or 3.0 kb, respectively. Probes unique to the 5' end of M5 or M22 hybridized to the 4.0- or 3.0-kb transcripts, respectively. RNA analysis using probes derived from sequence 3' to the potential splice site in M5 and M22 hybridized to both transcripts. Expression of the recombinant 115-kDa protein, or a smaller recombinant protein lacking the N terminus transiently in COS-7 cells, showed localization of enzyme activity to the membrane. Removal of the C-terminal CAAX motif resulted in a significant translocation of the protein lacking the N terminus but not the 115-kDa 5-phosphatase to the cytosol. Western blot analysis of membrane and cytosolic fractions of multiple mouse tissues confirmed the 115-kDa 5-phosphatase II was located in the membrane, whereas the 104- and 87-kDa isoforms were prominent in the cytosol. Collectively these studies demonstrate the widespread expression of at least three isoforms of 5-phosphatase II derived from RNA splicing events. This allows differential distribution of the 5-phosphatase II activity between the membrane and cytosol of the cell and thereby may regulate enzyme access to phosphoinositide-derived signaling molecules.

Related Organizations
Keywords

DNA, Complementary, Base Sequence, Cell Membrane, Inositol Polyphosphate 5-Phosphatases, Molecular Sequence Data, Phosphoric Monoester Hydrolases, Mice, Cytosol, COS Cells, Animals, Humans, Amino Acid Sequence, Sequence Alignment, Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Average
Top 10%
Top 10%
gold