Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The EMBO Journal
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
The EMBO Journal
Article . 1995
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

hsk1+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication.

Authors: T. Miyake; Hisao Masai; Ken-ichi Arai;

hsk1+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication.

Abstract

Degenerate oligonucleotide-directed polymerase chain reaction was conducted to clone a possible Schizosaccharomyces pombe homologue [hsk1 for a putative homologue of CDC7 (seven) kinase 1] of Saccharomyces cerevisiae Cdc7 kinase. The cloned cDNA for hsk1+ contains an open reading frame consisting of 507 amino acids with predicted mol. wt of 58,370 that possesses overall amino acid identity of 46% (65% including similar residues) to CDC7. In addition to conserved domains for serine-threonine kinases, the predicted primary structure of Hsk1 contains three 'kinase insert' sequences characteristic to Cdc7 at the positions identical to those of Cdc7. Whereas the length and sequences of the kinase inserts are diverged between the two yeast species, 58% identity (76% including similar residues) is detected within the kinase conserved domains. The hsk1+ gene, which is present as a single copy on the S.pombe chromosome, contains two introns within the coding frame. Disruption of the hsk1+ gene by insertion of the ura4+ gene is lethal to growth. Analysis of the DNA content of germinating spores that contain hsk1 null alleles indicates that DNA replication is inhibited in the mutant. The morphology of these mutant spores after germination indicates abnormal nuclear division in some population of germinating spores, suggesting either that Hsk1 may be required for inhibition of mitosis until completion of S phase or that it may also be involved in proper execution of mitosis. Our results suggest that hsk1+ is a strong candidate for the functional fission yeast homologue of budding yeast CDC7 and that a mechanism through which initiation of chromosomal replication is regulated may be conserved between the two yeast species.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, Genes, Fungal, Molecular Sequence Data, Nucleotide Mapping, Chromosome Mapping, Cell Cycle Proteins, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases, Peptide Mapping, Fungal Proteins, Phenotype, Gene Expression Regulation, Fungal, Schizosaccharomyces, Amino Acid Sequence, Schizosaccharomyces pombe Proteins, Chromosomes, Fungal, Genome, Fungal, DNA, Fungal, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    150
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
150
Top 10%
Top 10%
Top 10%
bronze