Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-Scale Identification and Evolution Indexing of Tyrosine Phosphorylation Sites from Murine Brain

Authors: Bryan A, Ballif; G Richard, Carey; Shamil R, Sunyaev; Steven P, Gygi;

Large-Scale Identification and Evolution Indexing of Tyrosine Phosphorylation Sites from Murine Brain

Abstract

Metazoans employ reversible tyrosine phosphorylation to regulate innumerable biological processes. Thus, the large-scale identification of tyrosine phosphorylation sites from primary tissues is an essential step toward a molecular systems understanding of dynamic regulation in vivo. The relative paucity of phosphotyrosine has greatly limited its identification in large-scale phosphoproteomic experiments. However, using antiphosphotyrosine peptide immunoprecipitations, we report the largest study to date of tyrosine phosphorylation sites from primary tissue, identifying 414 unique tyrosine phosphorylation sites from murine brain. To measure the conservation of phosphorylated tyrosines and their surrounding residues, we constructed a computational pipeline and identified patterns of conservation within the signature of phosphotyrosine.

Related Organizations
Keywords

Brain Chemistry, Evolution, Molecular, Mice, Binding Sites, Animals, Immunoprecipitation, Phosphorylation, Phosphotyrosine, Antibodies, Conserved Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!