
arXiv: 2312.15035
This paper introduces Hardcaml, an embedded hardware design domain specific language (DSL) implemented in the OCaml programming language. Unlike high level synthesis (HLS), Hardcaml allows for low level control of the underlying hardware for maximum productivity, while abstracting away many of the tedious aspects of traditional hardware definition languages (HDLs) such as Verilog or VHDL. The richness of OCaml's type system combined with Hardcaml's fast circuit elaboration checks reduces the chance of user-introduced bugs and erroneous connections with features like custom type defining, type-safe parameterized modules and elaboration-time bit-width inference and validation. Hardcaml tooling emphasizes fast feedback through simulation, testing, and verification. It includes both a native OCaml cycle-accurate and an event-driven simulator. Unit tests can live in the source code and include digital ASCII waveforms representing the simulator's output. Hardcaml also provides tools for SAT proving and formal verification. Hardcaml is industrially proven, and has been used at Jane Street internally for many large FPGA designs. As a case study we highlight several aspects of our recent Hardcaml submission to the 2022 ZPrize cryptography competition which won 1st place in the FPGA track.
FOS: Computer and information sciences, Computer Science - Programming Languages, B.6.3, Programming Languages (cs.PL)
FOS: Computer and information sciences, Computer Science - Programming Languages, B.6.3, Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
