Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hardcaml: An OCaml Hardware Domain-Specific Language for Efficient and Robust Design

Authors: Andy Ray; Benjamin Devlin; Fu Yong Quah; Rahul Yesantharao;

Hardcaml: An OCaml Hardware Domain-Specific Language for Efficient and Robust Design

Abstract

This paper introduces Hardcaml, an embedded hardware design domain specific language (DSL) implemented in the OCaml programming language. Unlike high level synthesis (HLS), Hardcaml allows for low level control of the underlying hardware for maximum productivity, while abstracting away many of the tedious aspects of traditional hardware definition languages (HDLs) such as Verilog or VHDL. The richness of OCaml's type system combined with Hardcaml's fast circuit elaboration checks reduces the chance of user-introduced bugs and erroneous connections with features like custom type defining, type-safe parameterized modules and elaboration-time bit-width inference and validation. Hardcaml tooling emphasizes fast feedback through simulation, testing, and verification. It includes both a native OCaml cycle-accurate and an event-driven simulator. Unit tests can live in the source code and include digital ASCII waveforms representing the simulator's output. Hardcaml also provides tools for SAT proving and formal verification. Hardcaml is industrially proven, and has been used at Jane Street internally for many large FPGA designs. As a case study we highlight several aspects of our recent Hardcaml submission to the 2022 ZPrize cryptography competition which won 1st place in the FPGA track.

Keywords

FOS: Computer and information sciences, Computer Science - Programming Languages, B.6.3, Programming Languages (cs.PL)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green