Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Pharmacological Sciences
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Possible Mechanism of the Anti-inflammatory Activity of Ruscogenin: Role of Intercellular Adhesion Molecule-1 and Nuclear Factor-κB

Authors: Li Ma; Ya-Lin Huang; Bo-Yang Yu; Bo-Yang Yu; Jia-Xi Song; Junping Kou;

Possible Mechanism of the Anti-inflammatory Activity of Ruscogenin: Role of Intercellular Adhesion Molecule-1 and Nuclear Factor-κB

Abstract

Ruscogenin (RUS), first isolated from Ruscus aculeatus, also a major steroidal sapogenin of traditional Chinese herb Radix Ophiopogon japonicus, has been found to exert significant anti-inflammatory and anti-thrombotic activities. Our previous studies suggested that ruscogenin remarkably inhibited adhesion of leukocytes to a human umbilical vein endothelial cell line (ECV304) injured by tumor necrosis factor-alpha (TNF-alpha) in a concentration-dependent manner. Yet the underlying mechanisms remain unclear. In this study, the in vivo effects of ruscogenin on leukocyte migration and celiac prostaglandin E(2) (PGE(2)) level induced by zymosan A were studied in mice. Furthermore, the effects of ruscogenin on TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and nuclear factor-kappaB (NF-kappaB) activation were also investigated under consideration of their key roles in leukocyte recruitment. The results showed that ruscogenin significantly suppressed zymosan A-evoked peritoneal total leukocyte migration in mice in a dose-dependent manner, while it had no obvious effect on PGE(2) content in peritoneal exudant. Ruscogenin also inhibited TNF-alpha-induced over expression of ICAM-1 both at the mRNA and protein levels and suppressed NF-kappaB activation considerably by decreasing NF-kappaB p65 translocation and DNA binding activity. These findings provide some new insights that may explain the possible molecular mechanism of ruscogenin and Radix Ophiopogon japonicus for the inhibition of endothelial responses to cytokines during inflammatory and vascular disorders.

Related Organizations
Keywords

Male, Active Transport, Cell Nucleus, Anti-Inflammatory Agents, RM1-950, Peritonitis, Dinoprostone, Cell Line, Mice, Cell Movement, Leukocytes, Animals, Humans, RNA, Messenger, Mice, Inbred ICR, Dose-Response Relationship, Drug, Ophiopogon, Endothelial Cells, DNA, Intercellular Adhesion Molecule-1, Disease Models, Animal, Plant Tubers, Therapeutics. Pharmacology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Average
gold