Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Book . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vitushkin’s Conjecture for Removable Sets

Authors: James J. Dudziak;

Vitushkin’s Conjecture for Removable Sets

Abstract

Preface.- 1 Removable Sets and Analytic Capacity.- 1.1 Removable Sets.- 1.2 Analytic Capacity.- 2 Removable Sets and Hausdor Measure.- 2.1 Hausdor Measure and Dimension.- 2.2 Painleve's Theorem.- 2.3 Frostman's Lemma.- 2.4 Conjecture & Refutation: The Planar Cantor Quarter Set.- 3 Garabedian Duality for Hole-Punch Domains.- 3.1 Statement of the Result and an Initial Reduction.- 3.2 Interlude: Boundary Correspondence for H1(U).- 3.3 Interlude: Some F. & M. Riesz Theorems.- 3.4 Construction of the Boundary Garabedian Function.- 3.5 Construction of the Interior Garabedian Function.- 3.6 A Further Reduction.- 3.7 Interlude: Some Extension and Join Propositions.- 3.8 Analytically Extending the Ahlfors and Garabedian Functions.- 3.9 Interlude: Consequences of the Argument Principle.- 3.10 An Analytic Logarithm of the Garabedian Function.- 4 Melnikov and Verdera's Solution to the Denjoy Conjecture.- 4.1 Menger Curvature of Point Triples.- 4.2 Melnikov's Lower Capacity Estimate.- 4.3 Interlude: A Fourier Transform Review.- 4.4 Melnikov Curvature of Some Measures on Lipschitz Graphs.- 4.5 Arclength & Arclength Measure: Enough to Do the Job.- 4.6 The Denjoy Conjecture Resolved Affirmatively.- 4.7 Conjecture & Refutation: The Joyce-Morters Set.- 5 Some Measure Theory.- 5.1 The Caratheodory Criterion and Metric Outer Measures.- 5.2 Arclength & Arclength Measure: The Rest of the Story.- 5.3 A Vitali Covering Lemma and Planar Lebesgue Measure.- 5.4 Regularity Properties of Hausdor Measures.- 5.5 The Besicovitch Covering Lemma and Lebesgue Points.- 6 A Solution to Vitushkin's Conjecture Modulo Two Difficult Results.- 6.1 Statement of the Conjecture and a Reduction.- 6.2 Cauchy Integral Representation.- 6.3 Estimates of Truncated Cauchy Integrals.- 6.4 Estimates of Truncated Suppressed Cauchy Integrals.- 6.5 Vitushkin's Conjecture Resolved Affirmatively Modulo Two Difficult Results.- 6.6 Postlude: The Original Vitushkin Conjecture.- 7 The T(b) Theorem of Nazarov, Treil, and Volberg.- 7.1 Restatement of the Result.- 7.2 Random Dyadic Lattice Construction.- 7.3 Lip(1)-Functions Attached to Random Dyadic Lattices.- 7.4 Construction of the Lip(1)-Function of the Theorem.- 7.5 The Standard Martingale Decomposition.- 7.6 Interlude: The Dyadic Carleson Imbedding Inequality.- 7.7 The Adapted Martingale Decomposition.- 7.8 Bad Squares and Their Rarity.- 7.9 The Good/Bad-Function Decomposition.- 7.10 Reduction to the Good Function Estimate.- 7.11 A Sticky Point, More Reductions, and Course Setting.- 7.12 Interlude: The Schur Test.- 7.13 G1: The Crudely Handled Terms.- 7.14 G2: The Distantly Interacting Terms.- 7.15 Splitting Up the G3 Terms.- 7.16 Gterm 3 : The Suppressed Kernel Terms.- 7.17 Gtran 3 : The Telescoping Terms.- 8 The Curvature Theorem of David and Leger.- 8.1 Restatement of the Result and an Initial Reduction.- 8.2 Two Lemmas Concerning High Density Balls.- 8.3 The Beta Numbers of Peter Jones.- 8.4 Domination of Beta Numbers by Local Curvature.- 8.5 Domination of Local Curvature by Global Curvature.- 8.6 Selection of Parameters for the Construction.- 8.7 Construction of a Baseline L0.- 8.8 De nition of a Stopping-Time Region S0.- 8.9 De nition of a Lipschitz Set K0 over the Base Line.- 8.10 Construction of Adapted Dyadic Intervals on the Base Line.- 8.11 Assigning Linear Functions to Adapted Dyadic Intervals.- 8.12 Construction of a Lipschitz Graph G Threaded through K0.- 8.13 Veri cation that the Graph is Indeed Lipschitz.- 8.14 A Partition of K n K0 into Three Sets: K1, K2, & K3.- 8.15 The Smallness of the Set K2.- 8.16 The Smallness of a Horrible Set H.- 8.17 Most of K Lies in the Vicinity of the Lipschitz Graph.- 8.18 The Smallness of the Set K1.- 8.19 Gamma Functions of the Lipschitz Graph.- 8.20 A Point Estimate on One of the Gamma Functions.- 8.21 A Global Estimate on the Other Gamma Function.- 8.22 Interlude:

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!