
AbstractObjectives: To generate a high‐resolution atlas of the hippocampal subfields using images acquired from 7 T, multi‐echo, gradient‐echo MRI for the evaluation of epilepsy and neurodegenerative disorders as well as investigating (apparent transverse relaxation rate) and quantitative volume magnetic susceptibility (QS) of the subfields. Experimental Design: Healthy control subjects (n = 17) were scanned at 7 T using a multi‐echo gradient‐echo sequence and susceptibility‐weighted magnitude images, and QS maps were reconstructed. We defined a hippocampal subfield labeling protocol for the magnitude image produced from the average of all echoes and assessed reproducibility through volume and shape metrics. A group‐wise diffeomorphic registration procedure was used to generate an average atlas of the subfields for the whole subject cohort. The quantitative MRI maps and subfield labels were then warped to the average atlas space and used to measure mean values of and QS characterizing each subfield. Principal Observations: We were able to reliably label hippocampal subfields on the multi‐echo susceptibility images. The group‐averaged atlas accurately aligns these structures to produce a high‐resolution depiction of the subfields, allowing assessment of both quantitative susceptibility and across subjects. Our analysis of variance demonstrates that there are more apparent differences between the subfields on these quantitative maps than the normalized magnitude images. Conclusion: We constructed a high‐resolution atlas of the hippocampal subfields for use in voxel‐based studies and demonstrated in vivo quantification of susceptibility and in the subfields. This work is the first in vivo quantification of susceptibility values within the hippocampal subfields at 7 T. Hum Brain Mapp 35:3588–3601, 2014. © 2013 Wiley Periodicals, Inc.
Adult, Male, Analysis of Variance, Signal Processing, Computer-Assisted, Organ Size, Hippocampus, Magnetic Resonance Imaging, Cohort Studies, Atlases as Topic, Humans, Female, Algorithms
Adult, Male, Analysis of Variance, Signal Processing, Computer-Assisted, Organ Size, Hippocampus, Magnetic Resonance Imaging, Cohort Studies, Atlases as Topic, Humans, Female, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
