Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 2009 . Peer-reviewed
Data sources: Crossref
UNC Dataverse
Article . 2009
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transient Expression of FRNK Reveals Stage-Specific Requirement for Focal Adhesion Kinase Activity in Cardiac Growth

Authors: Laura A, DiMichele; Zeenat S, Hakim; Rebecca L, Sayers; Mauricio, Rojas; Robert J, Schwartz; Christopher P, Mack; Joan M, Taylor;

Transient Expression of FRNK Reveals Stage-Specific Requirement for Focal Adhesion Kinase Activity in Cardiac Growth

Abstract

Focal adhesion kinase (FAK) is strongly activated by integrins and growth factors and is essential for embryonic development. We previously showed that the C terminus of FAK is expressed as a separate protein termed FAK-related nonkinase (FRNK) in a smooth muscle cell–selective fashion and that FRNK functions to buffer FAK-dependent signals. We now show that FRNK is also transiently expressed in the neonatal myocardium, with peak levels occurring 5 to 7 days postnatal, just before cell cycle withdrawal. Using novel mouse models, we demonstrate that cardiac-selective expression of FRNK (leading to inhibition of FAK) starting at embryonic day 10.5 leads to a severe ventricular noncompaction defect associated with reduced cardiomyocyte proliferation. Remarkably, postnatal expression of nearly identical levels of FRNK is well tolerated and does not affect viability or anabolic cardiac growth. Nonetheless, FRNK expression in the adult heart does attenuate pathological cardiac hypertrophy following aortic banding, confirming and extending our previous data that this compensatory response is blunted in FAK null hearts. Our mechanistic studies in cultured neonatal cardiomyocytes reveal that FRNK expression induces p38/p27 kip -dependent cell cycle withdrawal and attenuates extracellular signal-regulated kinase–dependent hypertrophic growth. These findings indicate that dynamic expression of FRNK in the neonatal heart may function to promote cardiomyocyte quiescence in an environment that is particularly rich in growth factors and growth promoting extracellular matrices.

Related Organizations
Keywords

Cell Cycle, Heart, Mice, Transgenic, Protein-Tyrosine Kinases, p38 Mitogen-Activated Protein Kinases, Rats, Mice, Inbred C57BL, Proto-Oncogene Proteins c-myc, Mice, Focal Adhesion Protein-Tyrosine Kinases, Animals, Female, Myocytes, Cardiac, Cells, Cultured, Cyclin-Dependent Kinase Inhibitor p27, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze