
We have obtained U and R band observations of the depletion of background galaxies due to the gravitational lensing of the galaxy cluster CL0024+1654 (z=0.39). The radial depletion curves show a significant depletion in both bands within a radius of 40''-70'' from the cluster center. This is the first time depletion is detected in the U band. This gives independent evidence for a break in the slope of the U band luminosity function at faint magnitudes. The radially averaged R band depletion curve is broader and deeper than in the U band. The differences can be attributed to the wavelength dependence of the slope of the luminosity function and to the different redshift distribution of the objects probed in the two bands. We estimate the Einstein radius of a singular isothermal sphere lens model using maximum likelihood analysis. Adopting a slope of the number counts of 0.2 and using the background density found beyond 150'' from the cluster center we find an Einstein radius of 17''+/-3'' and 25''+/-3'' in the U and R band, respectively. When combined with the redshift of the single background galaxy at z=1.675 seen as four giant arcs around 30'' from the cluster center, these values indicate a median redshift in the range 0.7 to 1.1 for the U_AB > 24 mag and R_AB > 24 mag populations.
11 pages, 12 figures, submitted to MNRAS
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
