Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Superficially active water in lipid membranes and its influence on the interaction of an aqueous soluble protease

Authors: Martini, M.F.; Disalvo, E.A.;

Superficially active water in lipid membranes and its influence on the interaction of an aqueous soluble protease

Abstract

The purpose of this paper is to demonstrate that the interaction of an aqueous soluble enzyme with lipid membranes is influenced by the lipid composition of the interphase. The results show that the interaction of an aqueous soluble protease, Rennet from Mucor miehei, depends on the exposure of the carbonyl and phosphate groups at the membrane interphase. The changes produced by the protease on the surface pressure of monolayers of dimyristoylphosphatidylcholine (DMPC); dioleoylphosphatidylcholine (DOPC); diphytanoylphosphatidylcholine (DPhPC); dipalmitoylphosphatidylcholine (DPPC); di-O-tetradecylphosphatidyl-choline [D(ether)PC]; dimyristoylphosphatidylethanolamine (DMPE); di-O-tetradecyl-phosphatidylethanolamine [D(ether)PE] were measured at different initial surface pressures. The meaning of the DeltaPi vs. Pi curves was interpreted in the light of the concept of interphase given by Defay and Prigogine [R. Defay, I. Prigogine, Surface Tension and Adsorption, John Wiley & Sons, New York, 1966, pp. 273-277] considering the interphase as a bidimensional solution of polar head groups. With this approach, and based on reported evidences that carbonyls and phosphates are the main hydration sites of the lipid membranes, it is suggested that the mechanism of interaction of aqueous soluble protein involves water beyond the hydration shell. At high surface pressure, only water strongly bound to carbonyl and phosphate groups is present and the interaction is not occurring. In contrast, at low surface pressures, the protease-membrane interaction is a function of acyl chain for different polar groups. This is interpreted, as a consequence of the changes in the interfacial tension produced by the displacement of water confined between the hydrated head groups.

Keywords

Surface Properties, Biophysics, Water, Lipid–protein interaction, Cell Biology, Superficially active water, Biochemistry, Lipid monolayer, Membrane Lipids, Surface pressure, Pressure, Interphase, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
hybrid