Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2008
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional Characterization of Pathogenic Human MSH2 Missense Mutations in Saccharomyces cerevisiae

Authors: Naz Erdeniz; Naz Erdeniz; Alison E. Gammie; Julia Beaver; Julia Beaver; Barbara Devlin; Afshan A. Nanji; +2 Authors

Functional Characterization of Pathogenic Human MSH2 Missense Mutations in Saccharomyces cerevisiae

Abstract

Abstract Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with defects in DNA mismatch repair. Mutations in either hMSH2 or hMLH1 underlie the majority of HNPCC cases. Approximately 25% of annotated hMSH2 disease alleles are missense mutations, resulting in a single change out of 934 amino acids. We engineered 54 missense mutations in the cognate positions in yeast MSH2 and tested for function. Of the human alleles, 55% conferred strong defects, 8% displayed intermediate defects, and 38% showed no defects in mismatch repair assays. Fifty percent of the defective alleles resulted in decreased steady-state levels of the variant Msh2 protein, and 49% of the Msh2 variants lost crucial protein–protein interactions. Finally, nine positions are predicted to influence the mismatch recognition complex ATPase activity. In summary, the missense mutations leading to loss of mismatch repair defined important structure–function relationships and the molecular analysis revealed the nature of the deficiency for Msh2 variants expressed in the tumors. Of medical relevance are 15 human alleles annotated as pathogenic in public databases that conferred no obvious defects in mismatch repair assays. This analysis underscores the importance of functional characterization of missense alleles to ensure that they are the causative factor for disease.

Keywords

MutS Homolog 2 Protein, Mutation, Missense, Genetic Variation, Humans, Saccharomyces cerevisiae, Colorectal Neoplasms, Hereditary Nonpolyposis, DNA Mismatch Repair, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
hybrid