
AbstractBackgroundRodent kindling induced by PTZ is a widely used model of epileptogenesis and AED testing. Overlapping pathophysiological mechanisms may underlie epileptogenesis and other neuropsychiatric conditions. Besides epilepsy, AEDs are widely used in treating various neuropsychiatric disorders. Mechanisms of AEDs' long term action in these disorders are poorly understood. We describe here aDrosophilasystems model of PTZ induced locomotor plasticity that is responsive to AEDs.ResultsWe empirically determined a regime in which seven days of PTZ treatment and seven days of subsequent PTZ discontinuation respectively cause a decrease and an increase in climbing speed ofDrosophilaadults. Concomitant treatment with NaVP and LEV, not ETH, GBP and VGB, suppressed the development of locomotor deficit at the end of chronic PTZ phase. Concomitant LEV also ameliorated locomotor alteration that develops after PTZ withdrawal. Time series of microarray expression profiles of heads of flies treated with PTZ for 12 hrs (beginning phase), two days (latent phase) and seven days (behaviorally expressive phase) showed only down-, not up-, regulation of genes; expression of 23, 2439 and 265 genes were downregulated, in that order. GO biological process enrichment analysis showed downregulation of transcription, neuron morphogenesis during differentiation, synaptic transmission, regulation of neurotransmitter levels, neurogenesis, axonogenesis, protein modification, axon guidance, actin filament organization etc. in the latent phase and of glutamate metabolism, cell communication etc. in the expressive phase. Proteomic interactome based analysis provided further directionality to these events. Pathway overrepresentation analysis showed enrichment of Wnt signaling and other associated pathways in genes downregulated by PTZ. Mining of available transcriptomic and proteomic data pertaining to established rodent models of epilepsy and human epileptic patients showed overrepresentation of epilepsy associated genes in our PTZ regulated set.ConclusionSystems biology ultimately aims at delineating and comprehending the functioning of complex biological systems in such details that predictive models of human diseases could be developed. Due to immense complexity of higher organisms, systems biology approaches are however currently focused on simpler organisms. Amenable to modeling, our model offers a unique opportunity to further dissect epileptogenesis-like plasticity and to unravel mechanisms of long-term action of AEDs relevant in neuropsychiatric disorders.
Epilepsy, Applied Mathematics, Gene Expression Profiling, Systems Biology, Synaptic Transmission, Disease Models, Animal, Gene Expression Regulation, Structural Biology, Modelling and Simulation, Animals, Pentylenetetrazole, Anticonvulsants, Drosophila, Molecular Biology, Locomotion, Research Article, Oligonucleotide Array Sequence Analysis
Epilepsy, Applied Mathematics, Gene Expression Profiling, Systems Biology, Synaptic Transmission, Disease Models, Animal, Gene Expression Regulation, Structural Biology, Modelling and Simulation, Animals, Pentylenetetrazole, Anticonvulsants, Drosophila, Molecular Biology, Locomotion, Research Article, Oligonucleotide Array Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
