Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hyperphosphorylation of Mouse Cardiac Titin Contributes to Transverse Aortic Constriction-Induced Diastolic Dysfunction

Authors: Henk Granzier; Chandra Saripalli; Carlos Hidalgo; Bryan D. Hudson;

Hyperphosphorylation of Mouse Cardiac Titin Contributes to Transverse Aortic Constriction-Induced Diastolic Dysfunction

Abstract

Rationale: Mechanisms underlying diastolic dysfunction need to be better understood. Objective: To study the role of titin in diastolic dysfunction using a mouse model of experimental heart failure induced by transverse aortic constriction. Methods and Results: Eight weeks after transverse aortic constriction surgery, mice were divided into heart failure (HF) and congestive heart failure (CHF) groups. Mechanical studies on skinned left ventricle myocardium measured total and titin-based and extracellular matrix-based passive stiffness. Total passive stiffness was increased in both HF and CHF mice, and this was attributable to increases in both extracellular matrix-based and titin-based passive stiffness, with titin being dominant. Protein expression and titin exon microarray analysis revealed increased expression of the more compliant N2BA isoform at the expense of the stiff N2B isoform in HF and CHF mice. These changes are predicted to lower titin-based stiffness. Because the stiffness of titin is also sensitive to titin phosphorylation by protein kinase A and protein kinase C, back phosphorylation and Western blot assays with novel phospho-specific antibodies were performed. HF and CHF mice showed hyperphosphorylation of protein kinase A sites and the proline glutamate valine lysine (PEVK) S26 protein kinase C sites, but hypophosphorylation of the PEVK S170 protein kinase C site. Protein phosphatase I abolished differences in phosphorylation levels and normalized titin-based passive stiffness levels between control and HF myocardium. Conclusion: Transverse aortic constriction-induced HF results in increased extracellular matrix-based and titin-based passive stiffness. Changes in titin splicing occur, which lower passive stiffness, but this effect is offset by hyperphosphorylation of residues in titin spring elements, particularly of PEVK S26. Thus, complex changes in titin occur that combined are a major factor in the increased passive myocardial stiffness in HF.

Related Organizations
Keywords

Male, Heart Failure, Diastolic, Myocardium, Aortic Diseases, Muscle Proteins, Mice, Inbred C57BL, Mice, Ventricular Dysfunction, Left, Animals, Connectin, Phosphorylation, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
bronze