Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relative tissue expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia-associated torsinA

Authors: Michael, Jungwirth; Mary Lynn, Dear; Patricia, Brown; Kristen, Holbrook; Rose, Goodchild;

Relative tissue expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia-associated torsinA

Abstract

A three base-pair deletion in the widely expressed TOR1A gene causes the childhood onset, neurological disease of DYT1 dystonia. Mouse Tor1a gene knockout also specifically affects the developing nervous system. However, in both cases, the basis of neuronal tissue specificity is unknown. TorsinA is one of four predicted mammalian torsin ATPases associated with assorted cellular activities (AAA+) proteins, raising the possibility that expression of a functionally homologous torsin compensates for torsinA loss in non-neuronal tissues. We find that all four mammalian torsins are endoplasmic reticulum resident glycoproteins. TorsinA, torsinB and torsin2 are all present in large M(r) complexes, which suggests that each assembles into an oligomeric AAA+ enzyme. Introducing a mutation (WB(EQ)) that typically stabilizes AAA+ proteins in a substrate-bound state causes torsinA and torsinB to associate with a shared nuclear envelope (NE) binding partner and this NE localization requires the torsinA interacting protein, lamina associated polypeptide 1. Although torsin proteins are widely expressed in the adult mouse, we identified that embryonic neuronal tissues contain relatively low torsinB levels. Therefore, our results reveal that torsinB expression inversely correlates with the cell and developmental requirement for torsinA. In conclusion, multiple cell types appear to utilize torsin AAA+ proteins and differential expression of torsinB may contribute to both the neuronal specific importance of torsinA and the symptom specificity of DYT1 dystonia.

Related Organizations
Keywords

Neurons, Mice, Dystonic Disorders, NIH 3T3 Cells, Animals, Humans, Carrier Proteins, Cells, Cultured, HeLa Cells, Molecular Chaperones

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
bronze