Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heregulin Regulates the Ability of the ErbB3-binding Protein Ebp1 to Bind E2F Promoter Elements and Repress E2F-mediated Transcription

Authors: Yuexing, Zhang; Anne W, Hamburger;

Heregulin Regulates the Ability of the ErbB3-binding Protein Ebp1 to Bind E2F Promoter Elements and Repress E2F-mediated Transcription

Abstract

The ErbB3/4 ligand heregulin (HRG) profoundly affects cell growth and differentiation, but its mechanism of action is poorly understood. Ebp1, a protein isolated by its binding to ErbB3, inhibits cell growth and represses transcription of E2F-regulated cell cycle genes. Since Ebp1 shares 38% identity with a Schizosaccharomyces pombe DNA-binding protein, we postulated that Ebp1 could bind E2F consensus elements in an HRG-inducible manner, leading to transcriptional repression. We show here that GST-Ebp1 bound to the DNA sequence bound by the S. pombe protein. Whereas GST-Ebp1 alone failed to bind E2F1 promoter elements, Ebp1 contained in nuclear lysates associated with E2F1 consensus sequences in the E2F1 promoter. Endogenous Ebp1 was recruited to the E2F1 promoter in vivo as demonstrated by chromatin immunoprecipitation assays. Ebp1 bound E2F consensus oligonucleotides in association with E2F1, retinoblastoma protein, and HDAC2. HRG regulated the association of Ebp1 with E2F promoter sequences and enhanced the ability of Ebp1 to repress transcription. Our findings suggest that Ebp1, by linking HRG activation of membrane receptors to E2F gene activity, may be a downstream modulator of the effects of HRG on cell cycle progression.

Keywords

Cell Nucleus, Neuregulin-1, Cell Cycle, Cell Cycle Proteins, Cell Differentiation, DNA, Ligands, Chromatin, Cell Line, E2F Transcription Factors, DNA-Binding Proteins, Cell Line, Tumor, Disease Progression, Humans, Carrier Proteins, Luciferases, E2F1 Transcription Factor, Adaptor Proteins, Signal Transducing, Glutathione Transferase, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
gold