Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Crystallographi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Crystallographica Section F Structural Biology and Crystallization Communications
Article . 2006 . Peer-reviewed
License: IUCr Copyright and Licensing Policy
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Crystallization and preliminary X-ray analysis of the Rieske-type [2Fe–2S] ferredoxin component of biphenyl dioxygenase fromPseudomonas sp. strain KKS102

Authors: Miki, Senda; Shigenobu, Kimura; Shinya, Kishigami; Toshiya, Senda;

Crystallization and preliminary X-ray analysis of the Rieske-type [2Fe–2S] ferredoxin component of biphenyl dioxygenase fromPseudomonas sp. strain KKS102

Abstract

BphA3, a Rieske-type [2Fe-2S] ferredoxin component of a biphenyl dioxygenase (BphA) from Pseudomonas sp. strain KKS102, was crystallized by the hanging-drop vapour-diffusion method. Two crystal forms were obtained from the same conditions. The form I crystal belongs to space group P2(1)2(1)2, with unit-cell parameters a = 26.3, b = 144.3, c = 61.5 A, and diffracted to 2.45 A resolution. The form II crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 26.2, b = 121.3, c = 142.7 A, and diffracted to 2.8 A resolution. A molecular-replacement calculation using BphF as a search model yielded a satisfactory solution for both forms.

Keywords

Iron-Sulfur Proteins, Bacterial Proteins, X-Ray Diffraction, Pseudomonas, Oxygenases, Solvents, Ferredoxins, Crystallization, Dioxygenases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
bronze