Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
Molecular Biology of the Cell
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Caveolin-3 Promotes Nicotinic Acetylcholine Receptor Clustering and Regulates Neuromuscular Junction Activity

Authors: Michael P. Hezel; Ferruccio Galbiati; William C. de Groat;

Caveolin-3 Promotes Nicotinic Acetylcholine Receptor Clustering and Regulates Neuromuscular Junction Activity

Abstract

The molecular mechanisms that regulate the organization and activity of the neuromuscular junction remain to be fully identified. Caveolae are invaginations of the plasma membrane. Caveolin-3 is the structural protein component of caveolae in muscle cells. We show that caveolin-3 is expressed at the neuromuscular junction, that it associates with the nicotinic acetylcholine receptor (nAChR), and that a lack of caveolin-3 inhibits clustering of the nAChR in myotubes. At the molecular level, we demonstrate that caveolin-3 is a novel muscle-specific kinase (MuSK) binding protein and that altered nAChR clustering in caveolin-3–lacking myotubes results from inhibition of agrin-induced phosphorylation/activation of MuSK and activation of Rac-1. Functional studies in caveolin-3 null mice show abnormal neuromuscular junction activity that is consistent with altered nAChR localization at the sarcolemma. Together, these data identify caveolin-3 as a critical component of the signaling machinery that drives nicotinic acetylcholine receptor clustering and controls neuromuscular junction function.

Related Organizations
Keywords

rac1 GTP-Binding Protein, Caveolin 3, Electromyography, Muscle Fibers, Skeletal, Neuromuscular Junction, Receptor Protein-Tyrosine Kinases, Articles, Receptors, Nicotinic, Models, Biological, Enzyme Activation, Mice, Animals, Agrin, Muscle, Skeletal, Cells, Cultured, Muscle Contraction, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
hybrid