Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Muscle & Nervearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Muscle & Nerve
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Muscle & Nerve
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measuring sensory nerve action potential electrical power

Authors: Niles M, Roberts; Jacqueline J, Wertsch;

Measuring sensory nerve action potential electrical power

Abstract

AbstractSensory nerve action potential (SNAP) amplitudes are frequently examined for evidence of axonal loss. Because digital nerves have parallel fibers, and parallel voltages do not add, SNAP amplitude may not accurately reflect axonal loss. In contrast, electrical power can be measured for digital nerves, and is additive. In this study we explore the ability of SNAP electrical power (SELP) to discriminate the increased number of axons in fingers with two median digital nerves versus fingers with only one median digital nerve. Antidromic SNAP amplitudes and SELPs were obtained for 15 fingers. Seventeen external resistors, Rext, were sequentially connected from electrode to ground for SELP determination. The resulting bell‐shaped power vs. Rext plot was regressed to the power transfer equation, which has a peak that defines SELP. SELPs of two‐digital‐nerve (median) fingers were 360–670 femtowatts (mean 525 fW). For one‐digital‐nerve fingers, SELP was 90–230 fW (mean 190 fW). Evaluation of one‐ vs. two‐median‐digital‐nerve statistics showed the SNAP amplitude difference‐of‐means to be insignificant, whereas the SELP difference‐of‐means was 3.3 SD (P < 0.01). Using a criterion of 2 SDs, SNAP amplitude did not discriminate any one‐median‐digital‐nerve fingers, whereas SELP discriminated all with no false positives. Because parallel voltages do not add, SNAP amplitudes may not reflect axonal loss. In contrast, electrical power is additive. We describe the SELP technique and demonstrate its ability to discriminate different numbers of axons as reflected by one digital nerve vs. two digital nerves. Muscle Nerve 41: 318–323, 2010

Keywords

Adult, Male, Sensory Receptor Cells, Electromyography, Models, Neurological, Neural Conduction, Action Potentials, Axons, Electric Stimulation, Median Nerve, Humans, Female, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!