
Genome-wide mapping of nucleosomes generated by micrococcal nuclease (MNase) suggests that yeast promoter and terminator regions are very depleted of nucleosomes, predominantly because their DNA sequences intrinsically disfavor nucleosome formation. However, MNase has strong DNA sequence specificity that favors cleavage at promoters and terminators and accounts for some of the correlation between occupancy patterns of nucleosomes assembled in vivo and in vitro. Using an improved method for measuring nucleosome occupancy in vivo that does not involve MNase, we confirm that promoter regions are strongly depleted of nucleosomes, but find that terminator regions are much less depleted than expected. Unlike at promoter regions, nucleosome occupancy at terminators is strongly correlated with the orientation of and distance to adjacent genes. In addition, nucleosome occupancy at terminators is strongly affected by growth conditions, indicating that it is not primarily determined by intrinsic histone–DNA interactions. Rapid removal of RNA polymerase II (pol II) causes increased nucleosome occupancy at terminators, strongly suggesting a transcription-based mechanism of nucleosome depletion. However, the distinct behavior of terminator regions and their corresponding coding regions suggests that nucleosome depletion at terminators is not simply associated with passage of pol II, but rather involves a distinct mechanism linked to 3’-end formation.
Chromatin Immunoprecipitation, Transcription, Genetic, DNA-Directed RNA Polymerases, Promoter Regions, Genetic, 3' Untranslated Regions, Nucleosomes
Chromatin Immunoprecipitation, Transcription, Genetic, DNA-Directed RNA Polymerases, Promoter Regions, Genetic, 3' Untranslated Regions, Nucleosomes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 72 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
