Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3’-end formation

Authors: Xiaochun, Fan; Zarmik, Moqtaderi; Yi, Jin; Yong, Zhang; X Shirley, Liu; Kevin, Struhl;

Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3’-end formation

Abstract

Genome-wide mapping of nucleosomes generated by micrococcal nuclease (MNase) suggests that yeast promoter and terminator regions are very depleted of nucleosomes, predominantly because their DNA sequences intrinsically disfavor nucleosome formation. However, MNase has strong DNA sequence specificity that favors cleavage at promoters and terminators and accounts for some of the correlation between occupancy patterns of nucleosomes assembled in vivo and in vitro. Using an improved method for measuring nucleosome occupancy in vivo that does not involve MNase, we confirm that promoter regions are strongly depleted of nucleosomes, but find that terminator regions are much less depleted than expected. Unlike at promoter regions, nucleosome occupancy at terminators is strongly correlated with the orientation of and distance to adjacent genes. In addition, nucleosome occupancy at terminators is strongly affected by growth conditions, indicating that it is not primarily determined by intrinsic histone–DNA interactions. Rapid removal of RNA polymerase II (pol II) causes increased nucleosome occupancy at terminators, strongly suggesting a transcription-based mechanism of nucleosome depletion. However, the distinct behavior of terminator regions and their corresponding coding regions suggests that nucleosome depletion at terminators is not simply associated with passage of pol II, but rather involves a distinct mechanism linked to 3’-end formation.

Related Organizations
Keywords

Chromatin Immunoprecipitation, Transcription, Genetic, DNA-Directed RNA Polymerases, Promoter Regions, Genetic, 3' Untranslated Regions, Nucleosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 1%
bronze